

Product Sheet Ammonia

BioSystems

Clinical analysis

human - centred biotech

Ammonia

What is ammonia?

Ammonia is a waste product of the protein catabolism and other nitrogenous compounds. It is formed mainly in the intestine by the degradation of proteins and other nitrogenous compounds, in the purine nucleotide cycle and in amino acid transamination cycles in skeletal muscle and by other metabolic processes in kidneys and liver. Ammonia is metabolized to urea in the liver by different enzymatic reactions and is eliminated from the body through the urine.

Why measure ammonia?

Reagents for the measurement of ammonia concentration in plasma for the assessment of its imbalance in the general population. Several diseases, acquired and inherited, that involve ammonia elimination are the causes of the hyperammonemia. In pediatrics, increases in ammonia concentration are associated with inborn errors of metabolism related to the urea cycle. Hyperammonemia acquired diseases are caused by severe liver damage, Reye's syndrome, organic acidemia and some kidney diseases. Furthermore, ammonia is a highly neurotoxic compound which is involved in the development of hepatic encephalopathies.

Reference values and pathologies

Normal values:

- Newborns: 90-150 µgN/dL (64-107 µmolN/L)
- Adults: 15-45 µgN/dL (11-32 µmolN/L)

These ranges are given for orientation only; each laboratory should establish its own reference ranges

Decreased levels:

- Some types of hypertension
- With the use of some antibiotics, such as neomycin

Increased levels:

- Acute or chronic liver encephalopathy, caused by the accumulation of ammonia in the brain due to a decrease in liver function (cirrhosis or hepatitis)
- Decreased blood flow to the liver
- Severe liver damage
- Organic acidemia
- Gastrointestinal bleeding
- With the use of turnstiles
- Enzyme disease of the urea cycle

- Some kidney diseases such as kidney failure
- Some drugs and smokes
- In neonates: Reye's syndrome, severe liver damage, congenital errors of metabolism related to the urea cycle and Hemolytic disease of the newborn

Method

	Glutamate	
2-Oxoglutarate + NH ₃	dehydrogenase	
+ NADPH	\longrightarrow	Glutamate + NADP $+$ + H ₂ 0

Performance characteristics

Method:	Glutamate Dehydrogenase		
Analysis mode:	Diferential bireagent		
Detection limit:	26.2 µmol/L = 44.5 µg/dL		
Linearity limit:	600 μmol/L = 1022 μg/dL		
Wavelength:	340 nm		
On board stability:	40 days		
Repeatability:	1.4% at 297 μmol/L = 505 μg/dL		
Reproducibility:	2.6% at 297 μmol/L = 505 μg/dL		
Sample type:	Plasma collected using standard procedures		
Interferences:	Bilirubin (up to 30 mg/dL), hemolysis (hemog- lobin up to 50 mg/dL) do not interfere. Lipemia and turbidity in the sample interfere with ammo- nia measurement. Other drugs and substances may interfere		

Reagents

Product	Code	Kit Format	Format
A15/A25 Automated System	12532	1 x 20 mL + 1 x 7 mL	Lyophilized RA; Liquid RB
BA Automated System	23532	1 x 20 mL + 1 x 7 mL	Lyophilized RA; Liquid RB
Ammonia, Ethanol, CO2 Calibrator	18065	2 x 5 mL	Liquid
Ammonia, Ethanol, CO2 Control level l	18063	3 x 5 mL	Liquid
Ammonia, Ethanol, CO2 Control level II	18064	3 x 5 mL	Liquid

customersupport@biosystems.es